
F8. Hybrid Programs
    Modal FaceWare windows and the commands supported by the UtilIt module can be used 
within any program.    Modeless windows, however, require use of the FaceIt or FaceSt event 
handling modules.    Most FaceWare programmers use FaceIt, but FaceSt is useful in cases 
where modeless windows must be added to programs or programming environments that do
their own low-level event handling.

What Is FaceSt?
    FaceSt ("FaceStub") is a scaled-down version of the FaceIt module that accepts FaceIt 
commands but does not provide most of the functionality of FaceIt.    It primarily serves to 
pass events and messages between the main program and FaceWare window drivers like 
ViewIt, and does not itself call WaitNextEvent or GetNextEvent.    Rather, FaceSt must be fed 
events by the main program.    This makes it possible to add FaceWare window event 
handling to existing event loops, and thereby support modeless FaceWare windows within 
any program or programming environment.

When To Use FaceSt
    FaceSt is most useful when either (a) you are trying to add FaceWare modeless windows to
one of your programs that already has a complex event loop and its own windows, or (b) you
are adding modeless FaceWare windows to a high-level programming environment that does
not give you direct access to its main event loop.    In the latter case we may have already 
done most of the work needed to make FaceSt work in the environment (ProFace for 
Prograph, HyperFace for HyperCard, etc.).

When NOT To Use It
    If you are new to Mac programming then use FaceIt before trying FaceSt.    If you are using 
FaceIt but think you need program-specific windows that differ from the FaceWare windows, 
then try using ViewIt windows for such windows and overriding control behavior within these
windows.    Responding to control messages in a control override proc is much easier and 
more powerful than creating windows "from scratch".

What You GAIN
    FaceSt supports any ViewIt, TextIt, GrafIt, or ShowIt modeless window and their associated 
standard menu items.    Without FaceSt, programs can only make use of FaceWare windows 
that are modal since these can be opened and closed without interacting with the main 
program's event loop.

What You LOSE
    The following functionality is lost when using FaceSt in place of FaceIt (much of this, 
however, may already be provided by the program to which FaceSt is being added):
- auto-loading of main program menus
- auto-initialization of windows (from STR# 1000)
- adding font names to STR# 1106
- all help opening or printing files "from the Finder"
- DoLoop command (replaced by program's event loop)
- the program-wide standard items "About", "Delete", "Transfer", "Quit", "Select", "Hide", 
"Send Behind", "Send to Back", "Hide Others", and "Show All"
- all Desk Accessory menu and event handling
- picture palette floating menus
- auto-hiding of non-FaceWare windows that generate update events
- auto-closing of modal ViewIt windows left open
- several of the DoInit options defined by parameter a (see DoInit description under 
"Commands" topic)



Initializations Done
    Toolbox initializations, stack space resetting, and program palette resetting to clut 1000 
are still done.    The toolbox initializations can be disabled by adding 1 to parameter c when 
calling DoInit.    Stack space resetting can be disabled by passing b = -1 when calling DoInit.  
Palette resetting can be disabled by removing clut 1000 or by adding 8 to parameter c when 
calling DoInit.    (All of these options are standard features of the DoInit command.)
    STACK TIP:    Many programmers do not realize that calling "MaxApplZone" has the effect of
permanently fixing the size of the stack to the default size set by the System.    Since 
FaceWare modules use additional stack space (especially during on-line editing of ViewIt 
windows), we recommend letting the DoInit command make the "MaxApplZone" call which it
will do when resizing the stack (b > -1).

Installing FaceStub
    FaceSt takes the place of FaceIt.    The simplest way to make FaceSt available to a program 
under development is to use MoveIt to move a copy of FaceSt from the FaceSt.FCMD file to a
resource file opened by the program.    (You'll also need LoadIt and any other program-
specific resources required by modules used by the program).    FaceSt will then be used in 
place of the FaceIt module in the FaceWare file, thereby avoiding the need to modify the 
FaceWare file.

Using FaceStub
    The "FaceStub" folder in the ViewIt demo folder contains a set of files whose names 
contain the "*" character.    These files correspond to the original vDemoLP example (which 
uses FaceIt), but have been modified to make use of the FaceSt module.    The source file 
contains all of the code from the original vDemoLP program, plus new code that takes the 
place of functionality lost from not using FaceIt.    The new code is denoted by comments of 
the form "* ... *", so it is easy to distinguish this code from the original.
    The following discussion assumes that you are familiar with vDemoLP*, so you may want 
to print the source and try running the program before reading further.

• Main Menus
    Programs that use FaceSt are responsible for installing main menus.    In vDemoLP* this is 
done using SetItm2 so that any labeled items ("#n") get processed and stored.    If you are 
working in an environment where you do not have an opportunity to use SetItm2 to load 
entire menus, then you can still use SetItm2 to add labels to individual menu items after a 
menu has been installed.    The following, for example, would make menu item 3 in a menu 
with menuID 129 the standard "Save" item (#5):
    FaceIt(nil,SetItm2,129,3,11,5);
    Labeled items operate as expected, with their appearance and behavior being controlled 
by the current program "context".    If the active window is not a FaceWare window, then 
FaceSt disables all standard labeled items.    If you wish to make use of such items while a 
non-FaceWare window is active, then have control returned whenever the active window is 
changed (by adding 2 to parameter a when calling DoInit), and respond by reenabling items 
that you wish to make available.    vDemoLP* uses this approach to make the standard 
"Clear" item available when its non-FaceWare window "myWindow" is active:
 FaceIt(nil,DoInit,2,0,0,0);
 ...
 if (uMenuID = 1100) and (uMenuItem = 2) then
    if (fActiveWnd = myWindow) then
      FaceIt(nil,SetItm2,103,8,2,1); enable Clear
WARNING:    Labeled items in a menu must be "de-labeled" before disposing of that menu.    
This can be done by using SetItm2 to dispose of the menu, or by using SetItm2 to remove 
one label at a time from the items in the menu.    ("Removing a label" means that UtilIt 



removes references to that item from its private labeled item data structures.)    In many 
cases, however, programs never dispose of the menus containing standard items and need 
not be concerned with this issue.

• Menu Events
    FaceIt-based event loops begin with DoLoop and then proceed with the processing of any 
menu or pseudo-menu events returned by FaceIt.    When using FaceSt, the DoLoop 
command is replaced by the main program's own event loop that processes raw events 
returned by WaitNextEvent.    In vDemoLP* this event loop is contained in the "MyLoop" 
procedure (described below).    MyLoop was set up to return any menu or pseudo-menu 
events to the main case block.    This makes the main case block of the program look similar 
to that seen in all FaceIt-based programs:
    repeat
      MyLoop;
      if (uMenuID = 101) then
        ...
    until false;
The only difference (other than calling "MyLoop"), in fact, between this block and that seen 
in the original vDemoLP program is that there are more menu items to handle corresponding
to things not done by FaceSt or to new things done with the program's own windows:    
opening DAs, Quit, Clear, etc.
    Note that when adding FaceSt to existing programs, there is no reason to split event 
handling into a raw event loop like "MyLoop" and a separate menu event block like that 
shown above.    We simply did it this way to illustrate the relationship between programs that
use FaceIt and those that use FaceSt.

• Raw Event Loop
 Most of the new code in vDemoLP* is found in its "MyLoop" procedure.    This procedure 
performs the 4 event-related tasks that are required by programs using FaceSt:
    1. keep identity of active window updated
    2. process any messages returned by modules
    3. process any pending events returned by WaitNextEvent
    4. give idle/hook time to modules
where these tasks must be performed in the above order (i.e., the identity of the active 
window must be correct before getting messages, all messages must be processed before 
getting raw events, and all events must be processed before giving idle/hook time to 
modules).    A description of each task follows:

1. The first task is to determine if fActiveWnd contains the active window's window pointer.    
In many programs the active window is simply the front window, but in others it is the first 
window below floating windows.    Your program should do whatever it needs to do to find its 
active window, and then call DoUpdt2 with d = 8 to update the fActive... variables in fRec if 
fActiveWnd is not correct.    In the vDemoLP* program "FrontWindow" is used to make this 
check:
    if (fActiveWnd <> FrontWindow) then
      FaceIt(nil,DoUpdt2,0,0,0,8)
Also note that calling DoUpdt2 with d = 8 will reset the current port to the active window if it
is a FaceWare window, but all other calls to FaceSt preserve the current port.    This differs 
from the behavior of FaceIt which resets the port to the active window each time DoLoop is 
called.

2. The second task is to check if there are any pending messages (= menu or pseudo-menu 
events) that have been posted by modules.    These special messages are stored in a private 
queue maintained by FaceSt and UtilIt.    The number of available messages is given by 
fMsgCount, and the next message can be removed from the queue by calling GetMsg.    The 



vDemoLP* program leaves the loop in MyLoop after getting such a message in order to 
mimic the behavior of the FaceIt module (which returns control from DoLoop with a menu or 
pseudo-menu event), but you could alternatively call a separate procedure to handle such 
pseudo-menu and menu events:
    else if (fMsgCount > 0) then
      begin
        FaceIt(nil,GetMsg,0,0,0,0);
        leave;
      end

3. The third task is to process any pending events returned by WaitNextEvent.    In general, 
the program must determine whether the event belongs to one of its windows or to a 
FaceWare window.    If it belongs to a FaceWare window, then the event is passed to FaceSt 
via fEvent and the DoEvnt command.    The code in vDemoLP* illustrates the typical logic 
used to determine when DoEvnt should be called.    In general, do not assume that you know 
how to handle an event belonging to a FaceWare window.    (You might think, for example, 
that you already know how to drag windows and can therefore call DragWindow to drag 
FaceWare windows, but doing so will rob the window of an opportunity to update its zoom 
states and mess up future zooming of the window.)
    Menu selections returned by "MenuSelect" or "MenuKey" are most easily processed by 
passing them to FaceSt.    If FaceSt does not know how to deal with the item (i.e., if it is not a 
standard item), then it posts a message back to the program that will be seen as a menu 
event returned by GetMsg (which explains why vDemoLP* has no routine for handling just 
menu selections).    You could alternatively use GetItm to pre-process a menu selection to 
determine if it corresponds to a standard item, but FaceSt already contains such code so it 
does not make much sense to do this in your program.
    Finally, note that it is not necessary to process events in exactly the manner shown in the 
vDemoLP* program.    In some environments, for example, you may be fed events or menu 
selections by code that you cannot modify.    In such cases, however, you can still do tasks 
#1 and #2 before processing an event that was passed, can still call DoMenu to further 
process a menu selection, and should still remain in a loop until all module messages have 
been processed.

4. The fourth task is to give idle and hook time to modules.    This is done by simply using 
DoEvnt to pass a null event in fEvent:
    else
      FaceIt(nil,DoEvnt,0,0,0,0);

• Switching
    FaceSt tracks whether a program is switched in (is the top application) or out (is in the 
background) under System 7 or MultiFinder by updating the fSleep variable in fRec.    If 
switched in, then fSleep = fFrontSleep.    If switched out, then fSleep = fBackSleep.    This 
scheme relies upon the feeding of "osEvt" events to FaceSt that indicate when the program 
is about to be switched in or out.
    Upon receiving an "osEvt" event, FaceSt updates fSleep, notifies all affected FaceWare 
windows, and then activates or deactivates the active window if it is a FaceWare window.    To
ensure that your program sees and responds properly to osEvt events, both the "Accept 
suspend events" and "Does activate on FG switch" flags in the SIZE resource should be set.   
If these flags are not set, then no osEvt-type events will be seen, and FaceSt will not have an
opportunity to notify FaceWare windows when a switch occurs.

• Window Kind
    The identity of the active window can be determined from the fActive... variables in fRec.    
If fActiveID = 0, then the window is not a FaceWare window.
    The "refCon" and "windowKind" fields of each window's window record are not used by 



FaceWare windows, meaning that a program can use these fields for its own purposes.
    If using ViewIt, then the GetWnd command can be passed the window pointer of any 
window, and resets wResID to indicate whether the window is a ViewIt window:    0 = not a 
ViewIt window, other = FWND ID associated with window.
    A faster way to determine whether a window is a FaceWare window is to examine 4 bytes 
within the "windowDefProc" handle associated with the window.    If the window is a 
FaceWare window, then the 4 bytes located 6 bytes into this handle block will be equal to 
the fRec variable fWDEF.    The following code illustrates use of this fact to check for a 
FaceWare window:
/* C */
 if (fRec.fWDEF == *(long*)(6 + (long)*theHdl))…
Pascal
 if (fRec.fWDEF = long(6 + ord(theHdl^))^ then…
C AF Fortran
 if (fRec.fWDEF == long(6 + long(theHdl)) then…
where "theHdl" is the "windowDefProc" handle from the window's window record, and "long" 
in the Pascal source is a type defined as "long = ^longint".

• Cursor Management
    FaceSt takes no responsibility for managing the cursor when a non-FaceWare window is 
active.    vDemoLP* handles cursor management by resetting the cursor to an arrow when a 
non-FaceWare window becomes the active window (indicated by fActiveID = 0):
 if (uMenuID = 1100) and (uMenuItem = 2) then
    if (fActiveID = 0) then
      FaceIt(nil,ChgCur,0,0,0,0);
where the use of ChgCur also ensures that fCursor in fRec is reset to -1 to inform FaceSt that 
the cursor will later need updating if a FaceWare window is made active.    In general, if the 
program changes the cursor without calling ChgCur, then set fCursor to -1 so that FaceSt 
knows that the cursor will need updating.

• Program Termination
    When quitting a program that contains FaceWare windows, these windows should first be 
sent two messages:    a "Save Documents" message that gives the user a chance to save 
changes before a window is closed, and a "Clean System" message that gives the window 
driver a chance to clean up stuff before the program quits.
    These two messages can be posted via the UtilIt command PstNot ("Post Note"), where a =
4096 = Save Documents, and a = 32 = Clean System.    In the case of Save Documents 
message, uResult will return with a non-zero value if the user cancels the operation (in which
case you should not quit the program).    vDemoLP*, for example, posts these messages 
when responding to its Quit menu item:
    FaceIt(nil,PstNot,4096,0,0,0);
    if (uResult = 0) then
      begin
        FaceIt(nil,PstNot,32,0,0,0);
        ExitToShell;
      end;

• Custom Procedures
    FaceSt (and FaceIt) make use of several procedures whose addresses are stored in fRec.    
Any of these addresses can be replaced by the address of a program procedure (Pascal type)
that will then be called by FaceSt or FaceIt in place of the default procedure.    The procedure 
addresses most likely to be changed by programs using FaceSt are (where "fPtr" is the 
address of fRec):

address:    fUpdateOther
form:    procedure MyUpdateOther(fPtr:FacePtr; theWindow:WindowPtr);



purpose:    Updates the content of the designated window.    This procedure is called by 
FaceSt or ViewIt whenever it finds a window that it does not know how to update.    It is 
usually a good idea to reset this address so that windows below modal ViewIt windows get 
updated when the modal window is dragged (the default procedure does nothing).    
vDemoLP* illustrates resetting fUpdateOther with the address of its own update procedure:
 fRec.fUpdateOther := ord(@MyUpdateOther);

address:    fSelectWindow
form:    procedure MySelectWindow(fPtr:FacePtr; theWindow:WindowPtr);
purpose:    Brings the designated window to the front.    FaceSt's default procedure simply 
calls SelectWindow.    If the program supports its own floating window scheme, then you may
need to replace this procedure with one that does not bring the window above floating 
windows (unless SelectWindow itself has already been patched).

address:    fActiveWindow
form:    function MyActiveWindow(fPtr:FacePtr) : WindowPtr;
purpose:    Finds the active window.    FaceSt's default procedure simply calls FrontWindow.    If
the program supports its own floating window scheme, then you may need to replace this 
procedure with one that finds the topmost window beneath any floating windows (unless 
FrontWindow itself has already been patched).

address:    fNewWindow
address:    fNewCWindow
address:    fGetNewWindow
address:    fGetNewCWindow
address:    fDisposeWindow
form:    same as corresponding toolbox call, but with additional "fPtr:FacePtr" as first 
argument
purpose:    Creates or disposes of window.    These are only used by FaceWare modules when 
creating or disposing of modeless windows.    Substitute your own procedures in cases where
the environment in which you are working requires the use of special commands to open or 
close windows (i.e., if it needs to perform additional operations when a window is created or 
destroyed).

• FSSC Menus
    UtilIt supports Font, Size, Style, and Color menus that can be made available via main 
program menus in programs using FaceSt if a little work is done by the program to set up 
these menus properly.    Note that this discussion only applies to main program menus, and 
not to the pop-up or pull-down menu controls found in ViewIt windows.
    The first step is to make the FSSC menus available as hierarchical menus by adding 
hierarchical menu items associated with menuIDs 196 (Font), 197 (Size), 198 (Style), and 
199 (Color) to one of the program's main menus.
    The next step is to add code to the program's event loop that checks to see if the current 
context supports the FSSC menus, and, if so, then enables these menus just before 
MenuSelect or MenuKey is called, and disables them after returning from these calls.    For 
example, to determine whether an active FaceWare window supports the FSSC menus, check
whether an editable control is selected in the window (vSelectCtl ≠ nil) and whether that 
control supports the "UsesFSSC" bit flag (BitTst(@cType,9)):
 if (vSelectCtl <> nil) then
    FaceIt(nil,GetCtl,0,0,0,ord(vSelectCtl));
 if (vSelectCtl<> nil) and BitTst(@cType,9) then
    begin
      EnableItem(fFontMenu,0);
      EnableItem(fSizeMenu,0);
      EnableItem(fStyleMenu,0);



      EnableItem(fColorMenu,0);
    end;
 theCommand := MenuSelect(fEvent.where);
 if (HiWord(theCommand) <> 0) then
    FaceIt(nil,DoMenu,HiWord(theCommand),...
 HiliteMenu(0);
 DisableItem(fFontMenu,0);
 DisableItem(fSizeMenu,0);
 DisableItem(fStyleMenu,0);
 DisableItem(fColorMenu,0);
    It is also possible for a non-FaceWare window to make its own use of the FSSC menus.    In 
this case the enabling and disabling shown above must also be done if such a program 
window is active, and an additional step is needed to update the content of the FSSC menus 
to reflect the state of the program window.    This can either be done using UtilIt's FixFSC 
command when the window becomes active (and whenever its current Font, Size, Style, or 
Color is changed while the window is active), or by calling FixFSC just before MenuSelect and
MenuKey are executed.    NOTE:    Avoid calling FixFSC when a FaceWare window is active 
since this will clobber any settings made by FaceWare modules associated with the window.
    Selection of an item from an FSSC menu is automatically processed by FaceSt to 
determine whether the selection would change the state of the FSSC menu.    If the FSSC 
menu would be changed, and the active window is not a FaceWare window, then FaceSt 
returns a program menu item event to the program (as a message returned by GetMsg), and
adjusts the current port's corresponding txFont, txSize, txFace, or fgColor (or rgbFgColor) 
WindowRecord field to reflect the selected font, size, style, or color.    In the case of a style 
change, txFace is set to contain just the selected style item (Plain OR Bold OR Italic...) so 
that the selected style can be turned on or off without affecting other styles in the window.    
The program can then read the updated font, size, style, or color from the window record 
and adjust the contents of its window accordingly.


